
dripdrop

Design Document

Team 25

Kaden Wingert, Kolby Kucera, Elyse Kriegel, Logan Roe, Zachary
Foote, Gavin Rich

Sdmay25-25@iastate.edu https://sdmay25-25.sd.ece.iastate.edu/

https://sdmay25-25.sd.ece.iastate.edu/


Executive Summary

Presently, in social media outfit sharing, apparel company affiliates typically must have 10,000+
followers before companies approve them to be registered affiliates. With our solution dripdrop,
this is no longer the only path to affiliate apparel sharing. dripdrop is an apparel-sharing social
media app that allows the everyday user to not only share their favorite outfits but also to view
outfits and find the best deals on the looks they desire. The idea is that our company will have
large-scale affiliate partnerships with many of the leading apparel companies so that the users
of our app can earn us a commission, and we will trickle most of this money down to the users.
Additionally, to save people money on the posting side, when users see post outfits they like, we
will have an AI-generated list that the user can click into, which will show items with similar
attributes from different sites so that the user can still get the look but for the best price.

The key design requirements at the highest level will be a working website, a working mobile
application, and a working AI-outfit matching model. We want a smooth and intuitive user
interface for the website and the application that provides the user with a simple and convenient
experience. The goal is an application where users can create an account, follow other users,
like and comment on posts, create posts for themselves, search accounts, and save posts.

For our design, we decided that for the database, we are using a MySQL database and an S2
bucket both hosted on Amazon Web Services. We use Python to create endpoint lambdas for
the backend to ensure our app is efficient and cost-effective. For the front end, we will be using
React, as it allows for universal code between the website and the mobile application.

Thus far, our team has set up the database and the website to be hosted on AWS, started
creating a model that can determine different qualities of an apparel item and create tags for the
qualities, made most of the lambdas for the backend, and have a majority of the pages with their
basic functionality on the frontend. Our website meets some user needs presently, as the page
is simple, intuitive, andsic functionality. Still, improvements must be made, including faster
loading times for the feed, a better way to search profiles, and a better feed algorithm that can
personalize the user's experience.

Our next steps are to transition to creating the mobile application, as only the website has been
worked on thus far. Additionally, we will work on finishing the AI-outfit matching model for the
app and polishing up the front so that pages are correctly formatted. All user functionality
(following, liking, commenting, saving posts) is added and works correctly.

Learning Summary
Development Standards & Practices



● Standards:
○ IEEE 1448a-1996 - Standard for Information Technology - Software Life Cycle

Processes
○ IEEE/ISO/IEC 12207-2017 - International Standard - Systems and software

engineering -- Software life cycle processes
○ IEEE 1012-1998 - IEEE Standard for Software Verification and Validation
○ IEEE/ISO/IEC 29119-2-2021 - ISO/IEC/IEEE International Standard - Software

and systems engineering - Software testing -- Part 2: Test processes
○ IEEE 1016-1987 - IEEE Recommended Practice for Software Design

Descriptions
○ IEEE/ISO/IEC 42010-2022 - IEEE/ISO/IEC International Standard for Software,

systems, and enterprise--Architecture description
● Practices:

○ Standard naming conventions for Python and typescript
○ Followed AWS best practices where applicable
○ HTTP status code guidelines for API responses
○ Concise and consistent comments
○ CRUD model for backend code

Summary of Requirements

● Fully functioning frontend: Website, IOS app, Android app
○ User authentication
○ Posts
○ User profile and feed
○ AI Price comparison feature

● Backend
○ MySQL Database
○ API Endpoints
○ Backend CRUD operation and business logic functions
○ Storing images

● Infrastructure
○ AWS CDK code to setup/manage our entire infrastructure
○ Host database
○ Host frontend code
○ CI/CD pipeline

● AI
○ Obtain comprehensive dataset
○ Create or obtain a model
○ Train model

Applicable Courses from Iowa State University Curriculum

● COM S 309
● COM S 363
● SE 319

https://standards.ieee.org/ieee/1448a/2156/
https://standards.ieee.org/ieee/1448a/2156/
https://standards.ieee.org/ieee/12207/5672/
https://standards.ieee.org/ieee/12207/5672/
https://standards.ieee.org/ieee/1012/1468/
https://standards.ieee.org/ieee/29119-2/7498/
https://standards.ieee.org/ieee/29119-2/7498/
https://standards.ieee.org/ieee/1016/1477/
https://standards.ieee.org/ieee/1016/1477/
https://standards.ieee.org/ieee/42010/6846/
https://standards.ieee.org/ieee/42010/6846/


● COM S 228
● SE 422
● SE 409

New Skills/Knowledge acquired that was not taught in courses:

● AWS Infrastructure
● AWS CDK Code
● AWS Services: Lambda, RDS, API Gateway, Aurora, Route 53, Secrets Manager, EC2

Instance
● Python
● Typescript
● React Native
● Creating and training our own AI model
● Bruno - API client



Table of Contents

Executive Summary 2
1. Introduction 8

1.1 Problem Statement 8
1.2 Intended Users 8

1. Fashion Enthusiasts 8
2. Budget-Conscious Shoppers 9
3. Social Media Influencers 9
4. Retailers and Brands 9

2. Requirements, Constraints, And Standards 10
2.1 Requirements and Constraints 10

2.1.1 Functional Requirements 10
2.1.2 Resource Requirements 10
2.1.3 Aesthetic Requirements 11
2.1.4 User Experiential Requirements 11

2.2 Engineering Standards 12
2.2.1 Importance of Engineering Standards 12
2.2.2 IEEE Standards applicable to dripdrop 12
2.2.3 Rationale for Applicability 13
2.2.4 Other Standards 14
2.2.5 Modifications needed to incorporate these standards 14

3 Project Plan 15
3.1 Project Management and Tracking Procedures 15
3.2 Task Decomposition 16
3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria 17

Milestone 1 - Website 17
Milestone 2- Mobile Application 18
Milestone 3 - AI to Find Similar Product 18

3.4 Project Timeline/Schedule 19
3.5 Risks and Risk Management/Mitigation 19

3.5.1 Frontend 19
3.5.2 Backend 20
3.5.3 Infrastructure 21
3.5.4 Artificial Intelligence 22

3.6 Personnel Effort Requirements 22
3.7 Other Resource Requirements 23

4. Design Exploration 23
4.1 Design Decisions 23

4.1.1 AWS vs. Azure 24



4.1.2 AWS Aurora vs. MongoDB 24
4.1.3 React vs. Angular 24

4.2 Ideation 25
Decision: Infrastructure/Server Provider 25

4.3 Decision-Making and Trade-Off 25
4.4 PROPOSED DESIGN 27

4.4.1 Overview 27
4.4.2 Detailed Design and Visual(s) 28

4.4.2.1 High-Level Overview 28
4.4.2.2 Detailed Overview (API) 29

4.4.2.2.1 Key Components and Their Roles 29
4.4.2.2.2 Internal Operations and Flow 30

4.4.2.3 Detailed Overview (Static Website Hosting) 31
4.4.2.3.1 Key Components and Their Roles 31
4.4.2.3.2 Internal Operations and Flow 32

4.4.2.3.3 Security and Access Control 33
4.4.3 Functionality 33
4.3.4 Areas of Concern and Development 34

4.4 Technology Considerations 35
4.5 Design Analysis 36

5 Testing 36
5.1 Unit Testing 37
5.2 Interface Testing 37
5.3 Integration Testing 38
5.4 System Testing 39
5.5 Regression Testing 40
5.6 Acceptance Testing 40
5.7 Security Testing 41

Testing Plan 41
Expected Outcomes 41

5.8 Results 42
Planned Testing Approach 42
Demonstrating Compliance 42
Next Steps 42

6 Implementation 43
7 Ethics and Professional Responsibility 45

7.1 Areas of Professional Responsibility/Codes of Ethics 45
7.2 Four Principles 47
7.3 Virtues 48

8 Closing Material 51
8.1 Conclusion 51



8.2 References 51
9 Team 52

9.1 Team Members 52
9.2 Required Skill Sets for Your Project 52
9.3 Skill Sets Covered by the Team 53
9.4 Project Management Style Adopted by Team 53
9.5 Initial Project Management Roles 54
9.6 Team Contract 54

Definitions and Key Concepts
1. AI Tag Matching: The process of matching clothing attributes (tags) AI models generate

to suggest similar products.
2. Amazon Aurora: A relational database service offering high performance and scalability.
3. AWS CDK: AWS Cloud Development Kit, a framework to define cloud infrastructure

using code.
4. AWS CloudFront: A content delivery network (CDN) service that caches and serves

static files and images globally, reducing latency for users in different regions.
5. AWS S3: Amazon Simple Storage Service, used for storing and retrieving media files

and hosting static website components with high availability and scalability.
6. AWS-Hosted Server: An AWS-hosted server is a virtual server hosted in the Amazon

Web Services (AWS) cloud infrastructure. It provides scalable and reliable computing
resources for deploying and running applications, such as hosting backend services and
databases for web applications.

7. Budget-Conscious Shopper: A user demographic focused on minimizing expenditures
while maintaining fashionable looks. Often includes students, young professionals, or
families who prioritize affordability.

8. Bruno: A testing tool used for verifying API behavior by testing endpoints for expected
request and response patterns. It simplifies API testing by allowing users to automate
test cases.

9. CI/CD Pipeline: Continuous Integration and Continuous Deployment—a methodology
for automating code testing and deployment.

10. CloudWatch: An AWS monitoring and observability service that provides actionable
insights into applications and infrastructure. It collects and visualizes metrics, logs, and
traces to help developers monitor application performance and troubleshoot issues.

11. CRUD: Create, Read, Update, Delete (operations for database and API).
12. Dynamic Test Processes (IEEE/ISO/IEC 29119-2-2021): A systematic testing approach

that includes test design, setup, and execution. It ensures comprehensive evaluation of
software requirements and performance.

13. Empathy Mapping: A collaborative tool to understand users' thoughts, feelings, and
needs, ensuring the solution addresses real-world problems effectively.



14. Fast Fashion: A clothing industry characterized by rapidly produced, low-cost garments
to meet current trends and often criticized for contributing to unsustainable shopping
habits.

15. Fashion Enthusiast: An individual passionate about staying updated with the latest
fashion trends, seeking to replicate styles seen on social media or through influencers.

16. IAM Policies: Identity and Access Management (IAM) policies are rules that define
permissions for actions and resources in AWS. They ensure that resources are
accessible only to authorized users or systems.

17. Image Recognition: An AI-driven model analyzes uploaded clothing images and
suggests descriptive tags (e.g., "denim jacket").

18. Kanban Board: A task management system that uses visual columns to track the status
of tasks.

19. Lambdas: In AWS, lambdas refer to AWS Lambda functions. These serverless
computing functions allow users to run code in response to events and manage the
computing resources automatically without needing to provision or manage servers. A
benefit of lambdas is that you are only billed for the time that the function runs, so you
don’t pay for unnecessary idle server time.

20.Modern UI/UX Standards: Design principles emphasize simplicity, clarity, and
responsiveness, ensuring an intuitive and engaging user experience.

21. Price Comparison: A tool or feature that allows users to analyze pricing across multiple
retailers to identify the most cost-effective options for a product.

22. Retail APIs: External application programming interfaces are provided by retailers (e.g.,
Amazon, eBay, Walmart) to fetch product details like pricing, availability, and
alternatives.

23. Role-Based Access Control (RBAC): A system that restricts access to specific actions
or data based on defined user roles, ensuring security and proper permissions
management.

24. Route 53: A scalable DNS web service provided by AWS for managing domain names,
ensuring traffic is routed effectively to AWS resources or external endpoints.

25. RPS: Responses per second (API throughput metric).
26. Social Media Influencer: A content creator on platforms like Instagram or TikTok who

showcases fashion-related material. They often engage their audience by sharing outfit
ideas, trends, and direct links to purchase items.

27. Static Website Hosting: A method of hosting static content, such as HTML, CSS, and
JavaScript files, without requiring a backend server. AWS S3 and CloudFront are often
used for this purpose to ensure scalability and low latency.

28. Unit Testing: Testing individual software components to ensure they perform as
expected.

29. User Personas: Fictional representations of target users based on demographics,
needs, and behaviors to guide design and development.

30. Verification and Validation (IEEE 1012-1998):
a. Verification: Ensures the software is developed correctly according to

specifications (e.g., through code reviews and automated tests).



b. Validation: Confirms that the final software product meets user requirements and
performs as intended.

1. Introduction

1.1 Problem Statement
With the growing popularity of social media, consumers’ clothing choices are constantly
influenced by online fashion trends. However, finding affordable versions of popular clothing
articles is challenging, particularly for users who don't have the time or desire to search across
multiple platforms and retailers. The fashion industry often markets expensive clothing that is
out of reach for the average consumer, creating a divide. Thus, budget constraints make
individuals feel disconnected from the trends they love.
Our solution, dripdrop, aims to improve the accessibility for users in the clothing industry. While
social media allows users to engage with fashion content, it doesn’t offer the tools to make
informed purchasing decisions. Our solution will help users discover where to buy the clothes
they see in posts while providing cheaper alternatives to ensure affordability. This approach
addresses the issue of rising clothing costs and the lack of transparency of prices for fashion.
Dripdrop targets users who want wardrobe inspiration without overspending, giving them the
resources to shop smarter. We are promoting affordability and accessibility in fashion by
providing a platform where users can upload images of clothing, link to retailers, and view price
comparisons. This is meant to encourage more cost-effective and thoughtful purchasing
decisions, addressing a global issue where fast fashion contributes to unsustainable shopping
habits.



1.2 Intended Users

1. Fashion Enthusiasts
● Description: Fashion enthusiasts are individuals who have a desire to stay up-to-date

with the latest trends. They pay attention to influencers and their styles and search for
ways to replicate these looks. The age range of these users ranges from teens to adults.

● Needs: Fashion enthusiasts need a single platform to quickly find the clothing they see
online and identify budget-friendly alternatives. They value style and affordability, making
it essential to access diverse retailers and pricing options in one place.

● Benefit: Our platform lets fashion enthusiasts quickly locate popular clothing items and
purchase affordable alternatives. Thus, the time and effort required to find desired,
affordable outfits is reduced. The platform will help fashion enthusiasts make informed
decisions, enhancing their shopping experience.

2. Budget-Conscious Shoppers
● Description: This group includes individuals whose main goal is to minimize spending

money when making purchases, particularly students, young professionals, or families.
These users want to stay fashionable but prioritize keeping their expenses low.

● Needs: Budget-conscious shoppers need access to price comparisons and cheaper
alternatives when shopping for clothing. They are looking for ways to achieve stylish
outfits without spending too much.

● Benefit: Our platform assists budget-conscious shoppers in their efforts to save money
by displaying the lowest prices for clothing items and offering similar, more affordable
alternatives. This feature directly addresses their desire for affordable fashion while
ensuring they can access styles that fit within their budget.

3. Social Media Influencers
● Description: Social media influencers are content creators who post fashion-related

material on social media, such as Instagram or TikTok. They maintain engagement with
their audience through showcasing outfits and fashion trends. Influencers often receive
questions asking where the featured items in their posts can be purchased.

● Needs: Influencers need a simple way to share details about their clothing and
recommend budget-friendly options to their followers. They also benefit from tools that
allow them to link to retailers and compare prices seamlessly.

● Benefit: Our platform enables influencers to post outfits with direct links to the most
affordable options. By offering this feature, they can engage their audience more
effectively and provide added value by promoting budget-friendly fashion. This helps
increase their credibility and maintain a strong connection with their followers, who
appreciate the simplicity of finding affordable options.



4. Retailers and Brands
● Description: Retailers and brands are businesses and vendors that sell clothing and

accessories. They desire to reach wider audiences and connect with potential buyers by
leveraging online platforms for marketing and sales.

● Needs: Retailers need visibility for their products, especially when it comes to competing
with other brands in a crowded market. They also need insights into consumer trends
and buying habits.

● Benefit: Retailers benefit from our platform, displaying their products to users who are
actively looking for affordable clothing options. They can drive sales by offering
competitive prices and reaching budget-conscious consumers who may not have
otherwise considered their brand.

Empathy Mapping and Personas FigJam Board:
https://www.figma.com/board/NaHKgQEzDSHwqSdj0KS3mO/sdmay25-25?node-id=0-1&node-t
ype=canvas&t=k3Vj84AyTggf38WO-0

2. Requirements, Constraints, And Standards

2.1 Requirements and Constraints

2.1.1 Functional Requirements
1. The app must require all users to sign up via email or social media accounts.
2. The app must allow all users to create and update their profile with basic

information such as name, profile picture, and bio.
3. The app must allow all users to follow others to see their clothing posts and

like/comment on them.
4. Users need the ability to upload images of their clothing with descriptions (brand,

price, size, etc.)
5. The app must automatically suggest tags based on image recognition (e.g.,

"denim jacket," "red shoes").
6. The system must use AWS S3 to handle user-uploaded media.
7. The system must use AWS S3 for static website hosting.
8. The system must leverage AWS SNS to send price drop notifications to

subscribers.
9. Users must be able to reset their password using their email address.
10. The system must leverage AI to recommend similar clothing items based on an

image of a clothing item.
11. Users must be able to filter clothing items by price, brand, and clothing article.

https://www.figma.com/board/NaHKgQEzDSHwqSdj0KS3mO/sdmay25-25?node-id=0-1&node-type=canvas&t=k3Vj84AyTggf38WO-0
https://www.figma.com/board/NaHKgQEzDSHwqSdj0KS3mO/sdmay25-25?node-id=0-1&node-type=canvas&t=k3Vj84AyTggf38WO-0


2.1.2 Resource Requirements
1. The product must allow users can search for products by name, brand, or

category (e.g., "Nike sneakers").
2. The product must implement advanced filters (size, color, price range, brand,

etc.).
3. When a user clicks the save ribbon, the product or outfits they like will be added

to their wishlist for future reference.
4. When a user’s wishlist product has dropped in price or is running out of stock, the

app must notify the user.
5. The system must use Amazon Aurora as a scalable database.
6. The database must support replication across multiple availability zones (AZs) to

ensure high availability and fault tolerance.
7. Implement role-based access control (RBAC) to define user roles and

permissions, ensuring restricted access to sensitive actions or data.
8. The system must use AWS CloudFront to cache and serve content ( static files

and images) globally, reducing latency for users in different regions.
9. Use GitLab actions for continuous integration and deployment, automating the

build, test, and deployment processes for rapid iteration.
10. Use AWS CDK to provision the cloud infrastructure.
11. Use AWS Cost Explorer to track and monitor AWS resource costs, ensuring that

the system remains within budget.

2.1.3 Aesthetic Requirements
1. The system must integrate with external retail APIs (e.g., Amazon, eBay,

Walmart) to fetch product details, prices, availability, and alternatives.
2. The system must dynamically scale API requests based on user volume.
3. The application must be navigable and intuitive enough for any new users to

create a post in under 90 seconds.
4. The app must offer a dark mode option for users, switching between light and

dark themes based on user preference.
5. The system must use legible, modern fonts with proper size and spacing to

ensure content is easy to read on all screen sizes.

2.1.4 User Experiential Requirements
1. The product must adhere to modern UI/UX standards.
2. To enhance user navigation, the system must use straightforward typography for

optimal readability, with a defined font hierarchy (headers, subheaders, body
text).

3. The social feed should emphasize simplicity and clarity, similar to leading social
media platforms (e.g., Instagram).

4. The product must provide visual feedback (e.g., color changes, shadows) for
interactive elements such as buttons, links, and images when hovered or clicked.



5. The system must follow a consistent design language across all pages, including
consistent use of color schemes, typography, button styles, and spacing.

6. When images or data are being fetched from the server, the app will provide
progress indicators to inform users.

7. The app must use small animations or color changes for actions like liking a post,
saving a wishlist item, or clicking buttons to give the user instant feedback.

2.2 Engineering Standards

2.2.1 Importance of Engineering Standards
Engineering standards are essential because they help ensure that different products and
technologies work together smoothly. Engineering standards are agreed-upon rules that guide
how devices are made and used, making life easier for everyone. For example, a Bluetooth
speaker can seamlessly connect to any type of smartphone, thanks to standards.

In addition to making things integrate well, standards define aspects of the production,
installation, and use of technology that ensure products are safe, reliable, and built to last. By
following these guidelines, companies and engineers don’t have to reinvent ideas whenever
they create something new. Instead, they can follow proven practices others have used. This
leads to a level of consistency and reliability across the industry.

Standards help push innovation forward, creating a foundation for new technologies. When
everyone follows the same set of rules, it’s easier to build on existing ideas and create new +
exciting products that people can use confidently.

2.2.2 IEEE Standards applicable to dripdrop

The software's life cycle is one of the project's most essential portions. IEEE 1448a-1996,
"Standard for Information Technology - Software Life Cycle Processes, " is an IEEE standard
that covers this.” Firstly, the standard discusses the software life cycle phases, including
essential steps such as planning, analyzing requirements, implementation, testing, and
deployment. Beyond the software life cycle phases, the standard also speaks of different
categories for processes, such as primary, supporting, and organizational processes. Primary
processes involve activities that directly impact software production, such as development.
Supporting processes include activities that support primary processes, such as documentation
or management. Lastly, organizational processes mean activities such as project management.
The standard also speaks on quality and consistency with a clear emphasis on ensuring that
quality is maintained in all portions of the development life cycle. This standard is significant for
our project as it is all software, and how we develop our software will have an extreme impact
on ensuring product quality.



Another vital standard to our project is IEEE 1012-1998, which entails software verification and
validation information. The primary purpose of this standard is to ensure that testing is done
correctly and often to catch software bugs as early as possible within the software development
cycle. Verification ensures the software is being developed properly to follow the specifications,
which may involve code reviews, testing, etc. On the other hand, validation confirms that the
developed software meets the requirements of the client/users. Further, verification answers if
the software is being built correctly, whereas validation answers if the right software is being
built. Firstly, the standard outlines that the requirements must be adequately defined, then the
design must be created to satisfy the requirements. The implementation occurs, including
testing, code reviews, etc.; finally, the testing involves validating that the software works as
intended. Importantly, given that this is an entire software project, there may be some going
back and forth between the steps, but the general structure still stands. Overall, this standard
intends to ensure that the product being developed is not on the right product, meaning it fulfills
the users' requirements, but also that the product is being developed properly to perform the
desired function correctly and within the specifications.

A third necessary standard of our project is IEEE/ISO/IEC 29119-2-2021, which directly deals
with software testing, such as how to test software systematically. As mentioned in the first
standard discussed, IEEE 1448a-1996, some of the test process framework reappears here
with organizational, test management, and dynamic test processes. This framework helps
ensure that the testing process has consistency throughout. Specifically, organizational test
processes involve defining objectives, how testing will be performed, such as what methods,
tools, etc., and how testing will be monitored to make necessary improvements. Test
management processes involve the planning of tests, such as the general approach to testing,
the resources required, and how frequently to test. It also involves tracking the progress of the
various tests and reviewing test results to ensure that they are completed as intended. Lastly,
dynamic test processes cover the actual execution of test design, setup, and execution. Test
design involves designing tests to ensure that everything is being tested, such as all
requirements being tested. Test setup involves making sure that access to all necessary
hardware/software is had. Test execution includes conducting the tests manually, via a pipeline,
or in some other manner. Overall, this is an essential standard for our project, as testing is how
we will determine that our product meets the requirements and needs of our client.

2.2.3 Rationale for Applicability

IEEE 1448a-1996: This standard aligns well with Agile, offering a robust framework for
managing the software life cycle that supports our iterative and flexible development approach.
Each Agile sprint can correspond to a cycle through the life cycle phases, ensuring we
consistently revisit planning, analysis, implementation, and testing. This will help us maintain
quality and manage the complexities of our AWS infrastructure, including deployments in S3,
CloudFront, and API Gateway.



IEEE 1012-1998: Verification and validation are essential in Agile as we iterate and add new
features with each sprint. This standard ensures that frequent testing, code reviews, and
requirement validation are performed consistently. We can automate much of the verification
process with AWS tools like CloudWatch and Gitlab pipelines. At the same time, manual
validations will help us confirm that the app’s functionality aligns with client requirements at
every stage.

IEEE/ISO/IEC 29119-2-2021: Systematic testing is critical for both our agile process and our
AWS-based backend, which includes several interconnected services (API Gateway, Lambda,
Aurora MySQL). This standard’s framework provides a way for us to ensure consistency in the
testing process across all AWS components. By integrating automated testing through Gitlab
pipelines and comprehensive test management practices, we can validate any changes to the
app and minimize risks associated with cloud deployments.

2.2.4 Other Standards

IEEE 1471-2000: This is the IEEE standard for Recommended Practice for Architectural
Description for Software-Intensive Systems. A few team members brought this up because our
project will include both a website and an application, so it is important that we have a strong
framework so that the app and the website can properly work together and our code can
support both of them.

IEEE 1008-1987: This is the IEEE standard for Software Unit Testing. While our team officially
decided for IEEE 29119-2-2021 to be included in our top three standards to cover our system
testing, it was also brought up. Specifically, unit testing would be important for our project. Unit
testing allows us to test all of the individual components in our app and ensure that they work.
All of our javascript functions and API calls would be dependent on unit testing on the micro
level in addition to the full system level tests, so it is essential for there to be a consistent
standard for these tests.

IEEE 829-2008: This is the IEEE standard for Software and System Test Documentation. A
group member also brought up this standard, as the procedures used to test must be consistent
throughout the app. This ensures that all components are tested rigorously and that no parts are
left out of testing. Proper documentation is essential to clarify how and when items were tested.

2.2.5 Modifications needed to incorporate these standards

1. For standard IEEE 1448a-1996, “Standard for Information Technology - Software Life
Cycle Processes,” we intend to be deliberate and consistent with our processes
supporting the software development life cycle. One of the biggest things we intend to do
is to write detailed documentation for both backend and frontend code. This could be
API endpoints' descriptions, URLs, and intended uses for the backend. We could also



write documentation for our SQL tables, with descriptions of the columns. For the front
end, we could write documentation about the different screens, what API endpoints they
utilize, and what information they need to display correctly. We could also write
documentation for potential modals and popups within the front end to describe the
conditions for them to appear.

2. We intend to incorporate systematic verification and validation within our development
system to comply with standard IEEE 1012-1998. These processes can largely be
automated using AWS tools like CloudWatch to monitor the deployment of our app to
AWS, along with utilizing the GitLab pipeline to ensure commits are safe and runnable.
We also intend to do manual validation and verification through testing and code review
before each commit for extra assurance.

3. For standard IEEE/ISO/IEC 29119-2-2021, we intend to test each of our commits to
ensure our code is stable, secure, and bug-free. This is most important for API
integrations to ensure data is secure and inaccessible for unintended use cases.
However, it is also essential that we do routine front-end testing to ensure our application
is stable and won’t crash or behave incorrectly. While we intend to use the GitLab
pipeline to ensure our code runs without issues, we also plan to do comprehensive
self-reviews and sophisticated system and integration testing before each commits to
catch logic errors the pipeline may not catch. Along with this, we also plan to do peer
reviews for commits with major implications and of significant importance to the app's
integrity to ensure there aren’t any uncaught app-breaking bugs or vulnerabilities.

3 Project Plan

3.1 Project Management and Tracking Procedures
Due to its iterative and flexible approach, the team chose Agile methodologies for project
management strategy. Since the project is entirely software-based, we can leverage agile to
break the project into smaller, more manageable tasks. This enables us to prioritize and deliver
critical features—such as setting up the AWS infrastructure or implementing front-end
post-creation—early in the process. Therefore, we can develop and refine the core functionality
of the project, allowing for a continuous improvement loop based on changing requirements.
Adopting Agile methodologies allows the ability to quickly adapt to feedback from the project
sponsor, which is crucial for a dynamic project environment. Agile encourages a high level of
continuous improvement and collaboration to make sure the team maintains alignment with the
end-user’s needs.
Several tools were used to ensure the team stayed on track and maintained frequent
communication for this project:

● Git/GitLab: For version control and collaboration on code, we will utilize Git and GitLab.
This will allow us to manage different branches, review code through pull requests, and
maintain a clear history of all project changes. GitLab will also serve as a platform for
continuous integration and deployment of new code.



● Issue Board: The project tasks are organized into a Kanban-styled GitLab issue board.
The board will contain columns including "To Do," "In Progress," and "Completed." Each
issue will be assigned to one of these groups. Each issue will have a single team
member assigned to it, allowing real-time visibility and information regarding the status of
various project components.

● Discord: The team has a discord server for all communication forms. Dedicated
channels were created for various aspects of the project (e.g., “Frontend,” “Backend,”
“Meetings”) to organize the discussions. Users can ping others to notify them of more
urgent matters to receive faster responses.

● Google Drive: For document storage, we have been using a shared Google Drive folder.
All shared assignments are located in this location, For organization, we have subfolders
for common elements, such as a weekly report folder and a design document folder.

● Weekly Meetings: The team meets every Thursday afternoon from 2:00 to 3:00 PM for
a standup meeting. During this time, each member explains what they worked on, what
they plan to take on next, and any blockers they face. These meetings keep the entire
team updated on the project’s most recent development.

● Sprints and Retrospectives: This team has two-week sprints. To begin each sprint, we
have a planning session to identify and prioritize the tasks for the next sprint. This
involves creating a product backlog and estimating each feature's time. Following each
sprint, we have a sprint retrospective meeting to reflect on what went well and poorly and
how we can improve for the subsequent sprint. This feedback loop is useful for
optimizing the overall workflow and increasing productivity.

3.2 Task Decomposition
At the top level of our project, we have the dripdrop apparel platform. This entails multiple large
tasks such as creating tables and API endpoints for our backend, a mobile application for
Android and iOS, a website, infrastructure, and AI-based features. To further describe these
tasks, the portion of the table is how we will store all of the user data and how the API will
connect our backend to our front end. The mobile applications for Android and iOS are two main
ways users can interact with our dripdrop platform. The third and final primary way of user
interaction will be provided through the website, which will have the same functionality as the
applications. The infrastructure will involve a CI/CD pipeline, database management, and
website hosting. Finally, the AI features will involve tasks such as determining the dataset to
train the model on, deciding what model to use, and determining how to train said model.
The database is created using Amazon Aurora, which will house all our essential tables with the
necessary information for our platform. This includes, but is not limited to, a table for user
information, posts, images for items/posts, the items themselves, coordinates for each item (i.e.,
where in the picture an item exists), clothing items that house general clothing item information
such as price, brand, category, etc., and a tag table to store tag information for clothing items.
Further, the backend involves an API requiring lambda functions to be implemented so that the
front end can request information, create, delete, and more. Specifically, these lambdas include,



but are not limited to, basic CRUD operations (creation, reading, updating, and deletion). Finally,
the backend must also store the images using S3 Buckets.
These will be how users interact with our social media platform for the applications and the
website. For these tasks, sign-up/sign-in pages and functionality will need to be implemented:
the ability to take pictures via the app and the ability to upload pictures on both the app and the
website, a posts/feed page unique to each user, tailored to their likings, and the usage of AI to
suggest similar products to users so one can find a similar looking outfit at a cheaper price.
Further, we need to create functional notifications and wish lists/saved posts so users can revisit
specific posts or clothing items later.
The infrastructure involves hosting the website, AWS CDK, database management, and a
CI/CD pipeline. Website hosting is how we will host our website so that it is public and users can
interact with it. As for the AWS CDK (AWS Cloud Development Kit), this defines our cloud
infrastructure meaning that we can create reusable components (constructs) for easier
deployment of our work. Infrastructure also involves database management, which defines how
we organize and manage all tables we create for proper and efficient data storage. Finally, the
infrastructure also involves a CI/CD pipeline to ensure our desired functionality continues
throughout integration/development.
The AI features involve determining what dataset we will train an AI model on, what AI model
we want to train in the first place, and how we want to train it. Determining the dataset, model,
and how we will train the AI will involve researching various options and then considering the
pricing and effectiveness of each option. This ensures our AI model performs our desired
actions efficiently and effectively.
In general, we have a lot of high-importance tasks that must be done and executed properly,
such as the design and implementation of the backend, the applications via React Native, the
website via React, the planning and implementation of the infrastructure components, and the
proper execution of developing our AI model. All of these high-level tasks involve many
low-level tasks, as described above, that are all important and necessary for the success of our
product.

3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria

Milestone 1 - Website
Our first key milestone will be to have a functioning website. This can be broken down into
multiple parts, including setting up the database, the backend, the API, and having a functional
frontend for users to interact.
For the front end, our first metric is a response time of <2 seconds. When a user wants to load a
new page or act, we want the information to be brought over the API to the backend and then to
the frontend in <2 seconds. This metric is strict, but we want the app to create a fast and
efficient user experience.
On the API level, there will be many metrics that we can measure. The first is the error rate. We
have a goal error rate of 1 percent or less. We want 1 percent of our backend calls to fail
because, again, we want a smooth aesthetic feel for our users, and errors from our product
would take away from that. We want our latency to be <200 ms for data transfers on the



website. This ties in with keeping response time at <1 second, but specifically for latency, we do
not want more than 200 ms before data transfers can begin. We also want the throughput of
calls to be >30 RPS(responses per second). This value will be fast enough for our app to
perform with a moderate amount of users without issues. When our app grows, we will have to
increase the throughput, but for our prediction of a moderate amount of users at the start of the
app, 30 RPS will suffice.
For the backend we want the backend to be able to support 100 concurrent users. This
concurrency rate will support our product when it is moderately sized and will have to be
optimized if our app grows to be larger, but for the initial release of the website, this is our goal.
Regarding our database queries, the metric is that simple queries are completed in < 200ms
and complex queries are completed in <500ms. This will allow the website to quickly post data
and get information from the database and keep the overall request quick.

Milestone 2- Mobile Application
Our next key milestone is the release of the app. This app will have the same backend as the
website, so many metrics will be very similar. In terms of producing the app, we want the app to
work on both IOS and Android products. The app will also be able to send mobile notifications.
Our performance metrics for the API, backend, and database will be the same for the app as
they were for the website because we will use the same backend for both. One metric we
wanted to add for the app is that the app fully loads in <4 seconds for the user to interact with.

Milestone 3 - AI to Find Similar Product
Our final key milestone is releasing the AI-generated list of similar products that users can click
on when looking at a post. This is the most complex portion of the entire product, as we are
creating our own AI model to do this. For metrics for the AI model, we expect the matched
products to match 85% of the tags of the original apparel item. One of the functionalities of our
AI is that it will generate tags (such as jeans, light blue, faded, size 28x30, bellbottom, etc.) This
85% match rate means that for an item to be placed on the view similar items list, it must match
85% of these tags. We want the error rate of this list to be less than %5, so less than 1 in 20
products on the list should not belong there (not meet the 85% criteria).

3.4 Project Timeline/Schedule



As described above, our project has three major milestones, each with several subtasks and
timelines. The first milestone we want is to have a working website. We hope to have a version
ready to demo by the end of the first semester in mid-December. As more features are
considered, we will continue expanding our website throughout the second semester. Before we
have a working website, we need to develop an API using lambda based on a database that will
be mostly complete by the beginning of December. We plan to complete most of our lambda
functions by late November. We will continuously update our front end to incorporate our API
calls while they’re developed. To have good testing measures, we developed a GitLab pipeline
throughout October to track deployment progress and check for bugs. We will also continue to
create unit tests throughout the project’s lifespan to ensure as few bugs as possible. We also
plan to develop code to scrape several sites routinely to find good deals for articles of clothing.
We anticipate this will be a large-scale project and last until early April. Near the end of this
process, we will provide these discounts to our users once we have enough sources to do so at
an acceptable level. We also plan to develop measures to keep data secure throughout the
two-semester project, especially near March, once we have enough data to warrant it.
Our second major milestone is a mobile application. The mobile app development will start in
mid-January and last until the beginning of May. In mid-May, we will demo our mobile app. Most
of our app’s front-end screens will take significant inspiration from the website, so we anticipate
the app to be at the same level of completeness as the website by early March. After that, we
will simultaneously continue to develop both platforms.
The third major milestone is building a custom AI model for detecting and recommending
clothing items. This will likely be our most challenging milestone. We have started researching
methods and ideas for our model and will continue to learn about AI and develop our plan
through mid-January. Once we have a strong understanding of our plan, we will start developing
our model, which will last through the end of the semester in mid-May.

3.5 Risks and Risk Management/Mitigation

3.5.1 Frontend

1. User Authentication

Risk: Our authentication process could have security vulnerabilities
Probability: 0.2

2. Creating Posts

Risk: Users uploading inappropriate text or images
Probability: 0.5
Mitigation: Complete thorough research on ways to implement filtering + perform thorough
testing to ensure consistent accuracy of filtering



3. Scrollable Feed

Risk: Feed could be slow or buggy when we reach a high volume of posts
Probability: 0.6
Mitigation: Implement pagination or infinite scroll + use caching for recently viewed posts

4. User Profile

Risk: User profile screen and features may not be user-friendly
Probability: 0.2

5. Saved Posts

Risk: This feature may load slowly if we have to query all the saved posts for a user every time
we load this page
Probability: 0.5
Mitigation: Use efficient indexing in the database; consider limits on saved posts or archiving
strategies.

6. Price Comparison Feature

Risk: This is a very complex feature that relies on AI. As a result, the user may experience a
buggy or slow experience.
Probability: 0.8
Mitigation: Identify ways to improve the app's usability if we experience unexpected responses
or behavior from the AI. Handle long response times with loading visuals.

3.5.2 Backend

1. Creating Tables

Risk: Complex relationships that cause errors and require many API calls on the frontend
Probability: 0.5
Mitigation: Be thorough with our planning phase of the tables, and consult the team when
making changes or updates to our original design

2. API Endpoints

Risk: Certain endpoints could experience high latency or traffic
Probability: 0.3

3. Lambda Functions



Risk: Lambdas breaking after new changes will cause our app to break
Probability: 0.6
Mitigation: Implement unit tests that must pass before new changes are pushed to the master
branch

4. Storing Images

Risk: Running out of space to store all the images
Probability: 0.2

5. Research 3rd Party API for retail data

Risk: Spend too much time looking for a perfect solution instead of creating our own
Probability: 0.7
Mitigation: We need to do this research early on so that we have time to plan or switch
directions depending on what we choose

3.5.3 Infrastructure

1. Hosting Website

Risk: Unexpected downtime + cost increases
Probability: 0.1

2. CDK code

Risk: Developers make changes on the AWS console and cause issues to our infrastructure
Probability: 0.5
Mitigation: Make it clear to all teammates that all infrastructure changes need to be made using
our CDK code.

3. Database Management

Risk: Incorrect configuration or provisioning could lead to overuse and overspending of
resources.
Probability: 0.6
Mitigation: Closely monitor our AWS bill and budget and make changes if we notice anything
unusual. Also, set an AWS budget to monitor us when we are close to our monthly budget

4. Pipeline

Risk: Automated CI/CD could deploy unwanted or untested code.
Probability: 0.2



3.5.4 Artificial Intelligence

1. Determine Dataset

Risk: Finding a high-quality dataset with the necessary diversity and accuracy could be
challenging and time-consuming
Probability: 0.8
Mitigation: Start this process early and find alternate solutions to fall back on.

2. Determine the Model to Use

Risk: There are many models out there, and finding the one that works best for the context of
this class may not be feasible
Probability: 0.7
Mitigation: Similar to the previous risk, we need to progress on this early so we can
pivot/change if necessary.

3. Train the Model

Risk: Training infrastructure could exceed budget or fail to handle large data.
Probability: 0.6
Mitigation: Train using cloud GPU/TPU resources on a pay-as-you-go basis; if budgetary
constraints arise, consider transfer learning or using a pre-trained model to reduce time and
cost.

3.6 Personnel Effort Requirements



This table provides a structured overview of tasks along with estimated hours for each task in
the "Frontend," "Backend," and "Infrastructure" sections. The columns to the right of the
estimated hours are designated for group members to log their time spent on each task. This
will help track actual hours against the estimated hours and assist in monitoring individual
contributions and task progress.

3.7 Other Resource Requirements
Our main resource requirement is our AWS account. We have contacted ETG and received an
AWS account we all can access. We also sent them a monthly budget projection and had that
approved. Currently, AWS is the only resource we are using, because we are taking advantage
of their cloud computing features for all aspects of our project that require computing resources.
In the future, depending on what AI solution we determine is best for our product matching
feature, we will need to add an AI resource to this section.

4. Design Exploration

4.1 Design Decisions
When planning the architecture, the team prioritized scalability, flexibility, and cost-effectiveness,
which led us to leverage the cloud for the infrastructure, specifically AWS, as the cloud provider
of choice. Furthermore, when selecting a database, Amazon Aurora, a MySQL database, was
selected due to its high speed and scalability compared to alternatives. Once this was



determined, the frontend language needed to be determined. Due to its flexibility as a javascript
library focusing on the view layer, the team decided to leverage React.

4.1.1 AWS vs. Azure
Using a cloud provider over on-premise is crucial for a more scalable, flexible, and cost-effective
solution. Once we decided to use a cloud provider, we needed to determine which provider best
suited our needs, and we chose to use AWS over Microsoft Azure for several reasons. First, our
decision to use AI for product recommendations is a key feature of our app, and AWS offers
more flexible and advanced services in the AI/ML realm. Specifically, Amazon SageMaker will
allow us to quickly build and train an effective model to analyze clothing items and recommend
similar products. Additionally, Amazon’s Aurora offers a leg up on Azure SQL since we use a
relational database. Aurora has superior speed and scalability while being compatible with
MySQL. Azure SQL would have been the better choice if we needed a seamless integration
with other Microsoft products. Still, it cannot match the low-latency reads and other benefits of
Amazon Aurora.

4.1.2 AWS Aurora vs. MongoDB
After deciding which cloud provider to use, we needed to determine what kind of database
would best fit the architecture of dripdrop because selecting the correct database impacts our
ability to scale and maintain a positive user experience. Leveraging a database through AWS
was preferred because it offers a seamless integration with other AWS services. Next, when
deciding whether to leverage a relational or nonrelational database, we considered the use
cases of what dripdrop will need to do. A relational database made the most sense since the
app's functions require structured tables for our users, posts, clothing items, and favorite items.
Aurora is a managed, relational database offering automated backups and compatibility with
MySQL and PostgreSQL. On the other hand, MongoDB is a key-value NoSQL database, which
is better for high-volume data ingestion and real-time data analytics. MongoDB’s lack of
enforced schemas would require additional validation in the application layer to ensure data
quality, creating more work than having a structured database.

4.1.3 React vs. Angular
For our fronted development, we found that React would best suit the needs of our application.
First, since React is a javascript library focusing only on the view layer, it allows for easier
integration with other libraries and third-party tools, giving us more flexibility. Angular is an MVC
framework that is helpful for end-to-end solutions but can limit flexibility and make it more
challenging to integrate with other tools and libraries if we need to, down the road. Being open
source, React also has a larger and more active developer community, including comprehensive
documentation, making it effortless to follow best practices. Although Angular also has a strong
community, the presence of React’s community allows us to stay more agile and respond to
issues faster. Lastly, our team has more experience working with React which will help us
maximize our development time, ensuring project deadlines are met.



4.2 Ideation

Decision: Infrastructure/Server Provider
Early on, one of the most significant decisions we needed to make was how we would host
critical aspects of our project, like our database and front-end code. As discussed above, the
primary decision was Microsoft Azure vs. AWS.
Initially, we identified 3 potential paths to take: using on-premise Iowa State servers, a cloud
provider, or combining the two to employ a hybrid approach. There wasn’t much time spent
exploring more options because for servers and compute services, we have to use what Iowa
State will provide us or find suitable cloud options. There isn’t another feasible alternative within
the scope of this class. After researching cloud providers, we decided it would be easiest to
choose one of the three industry leaders: AWS, Microsoft Azure, or Google Cloud Platform. At
this point, we had five potential options:

Iowa State Servers: This would require collaboration with the computer science or computer
engineering department to provision servers for us. The main benefit is that all team members
are familiar with this setup, and it could offer better control over data security and compliance.
Amazon Web Services: AWS is the most popular and largest cloud provider, offering many
services, including computing, storage, databases, machine learning, and more. AWS is known
for its scalability, security, and flexibility.
Microsoft Azure: Azure is strong for organizations with existing Microsoft infrastructure. It offers
a wide range of cloud services. It is known for its hybrid capabilities, making it a good choice for
enterprises looking to integrate on-premises infrastructure with the cloud.
Google Cloud Platform: GCP has strengths in data analytics, machine learning, and
Kubernetes-based deployments. It also has a wide range of cloud services similar to AWS and
Azure, although it is not as popular or advanced as Azure or AWS.
Hybrid Approach: This approach would combine the Iowa State servers with a cloud provider.
For example, we could host non-critical data on campus servers and run high workloads in the
cloud, giving us flexibility and control.

4.3 Decision-Making and Trade-Off
With 5 options to choose from, it was essential to identify essential criteria that we could use to
compare the different options. We brainstormed what things were most important for our app
and our team. We narrowed it down to 7 criteria to base our decision: # of team members with
experience, cost, database capabilities, services provided, AI/ML capabilities, scalability, and
ease of use.
After researching the five options and discussing them as a group, we ranked them for each
criterion. For each row, we gave the best option a 5, the second best option a 4 … and the worst
option a 1.



Iowa State
Resources

AWS Azure GCP Hybrid

Team
experience

5 3 2 1 4

Cost 5 3 1 2 4

Database 1 5 4 3 2

Range of
Services

1 5 4 3 2

AI/ML 1 5 3 4 2

Scalability 1 5 3 4 2

Ease of Use 2 5 3 4 1

Total 16 31 20 20 17

From this table, you can see that our highest score was AWS. This is what we ended up
choosing for our infrastructure and server provider. This is a result of several key reasons
highlighted in the table:

● Of all the cloud options, our team had the most prior experience working with AWS,
giving us confidence we would be able to implement this choice effectively

● Looking at cost, AWS again scored the best of the cloud options. The AWS free tier
offers many ways to take advantage of their popular services for free. Although it may be
more expensive than purely Iowa State resources, its benefits outweigh these costs.

● When you dive into the services provided by each option, AWS is again the leader. AWS
didn’t become the most used cloud service by accident; it has the most robust and wide
variety of services on the market. If we used Iowa State resources, we would have to
use many individual third-party services, whereas AWS has a service for just about
everything.

● While a hybrid approach could take advantage of many of these AWS benefits, our
group believed the challenges and complexity of managing AWS and Iowa State
resources simultaneously make it the hardest approach to implement.

4.4 Proposed Design

4.4.1 Overview
Our app, dripdrop, is a social media apparel posting app in which users post their favorite outfits
and provide the URL where they bought the items. Our app will then use this URL to generate
the product information for the viewers of the post to see when they click on the post. The idea



is that our app, dripdrop, will partner with many apparel companies. Then, when users post on
our app and other people use their posts to find and buy items, our company will receive a
commission for the purchased items, and we will trickle most of this commission down to the
user that posted, but in the form of dripdrop points. The points can be cashed in for gift cards to
all our partner companies. So, we are allowing users to play the role of an influencer without first
building a following or creating their own partnerships with apparel companies, which can be a
lot of work.
To provide a clear visual, here is how a user can tap on a post to view the tagged items:

It is as simple as viewing the item, tapping on the post to see which items are tagged, and then
tapping/hovering over the desired item’s tags, which creates a pop-up of the item info and link.
There are going to be several features that go with this design. The first and largest will be our
“find similar items” button attached to the apparel tags on every post.. This will be an AI
generated list of items that look similar to the original item but are cheaper so that the user can
get the looks of the outfit without spending as much.
Another feature will be the ability to follow other users and have a following. This will be similar
to what other social media platforms do, so the people you follow will be the primary people who
will pop up on the feed of posts.
Users will also be able to save posts and individual apparel items. These will be stored on their
profile page and allow users to go back to old posts they looked at to see if products have gone
on sale or are simply in a better place to buy. Additionally, we will have a search bar so user
profiles, posts, and specific items in posts can be searched using the search bar.



4.4.2 Detailed Design and Visual(s)

4.4.2.1 High-Level Overview
The system design comprises several AWS services that provide a scalable, secure, and
performant application infrastructure. The design is broken down into subsystems, each playing
a distinct role, from user interface (UI) to backend processing and data storage. Key
components include CloudFront for content delivery, Route 53 for DNS management, an S3
bucket for static content, API Gateway for managing API requests, Lambda functions for
business logic, and Aurora MySQL for data persistence. This architecture follows a serverless
approach where services are highly managed, reducing the operational overhead and ensuring
scalability.



4.4.2.2 Detailed Overview (API)

This API infrastructure is designed with AWS Lambda functions as the core of its serverless
backend, each handling specific API operations. The API leverages API Gateway to manage
HTTP requests, which trigger the appropriate Lambda function based on the request path and
method. The Aurora MySQL database serves as the primary data storage, and it is connected
via RDS Proxy to manage connection pooling and optimize performance under load. AWS
Secrets Manager securely stores database credentials, and each component operates within a
Virtual Private Cloud (VPC) to enhance security.

4.4.2.2.1 Key Components and Their Roles

1. API Gateway: Acts as the entry point for all HTTP requests to the API, routing them to
the appropriate Lambda function based on the request’s path and method. It also
enforces security and access control policies.

2. Lambda Functions:
○ Each Lambda function serves a specific or a set of related endpoints for CRUD

operations.
○ Functions include CreateUser, GetUsers, GetUserById, UpdateUser, DeleteUser,

and authentication (UserSignIn). Similar Lambda functions manage Post and
Image data.

○ Each function operates in a VPC, has access to Secrets Manager for database
credentials, and uses the shared environment configuration to interact with the
Aurora MySQL database via RDS Proxy.

3. Aurora MySQL Database:
○ Acts as the persistent storage for user, post, and image data.
○ Connected to Lambda functions through RDS Proxy helps manage database

connections efficiently, especially in high-throughput scenarios.



4. RDS Proxy:
○ Provides connection pooling and efficient database connection management for

Lambda functions.
○ Protects the database from being overwhelmed by managing simultaneous

connections from multiple Lambda functions, thus enhancing reliability and
scalability.

5. Secrets Manager:
○ Securely stores database credentials, which Lambda functions retrieve at runtime

to establish secure connections to Aurora MySQL.
○ Integrated with IAM roles and policies, only specific Lambda functions can

retrieve the database credentials.
6. VPC and Networking:

○ A VPC isolates the API components to ensure security and controlled access.
○ Private subnets for Lambda functions and Aurora MySQL prevent direct internet

exposure.
○ Security groups restrict traffic to and from Lambda functions and the Aurora

database, ensuring that only permitted connections are allowed

4.4.2.2.2 Internal Operations and Flow

1. User Requests: Users interact with the API via HTTP requests sent to the API Gateway.
○ API Gateway determines the correct Lambda function to invoke based on the

URL path and HTTP method.
○ For instance, a POST request to /users would trigger the CreateUserLambda,

while a GET request to /users/{id} would trigger GetUserByIdLambda.
2. Lambda Function Execution:

○ Each Lambda function retrieves necessary configuration data (e.g., database
endpoint, port, credentials) from its environment variables and Secrets Manager.

○ The function executes the corresponding business logic (e.g., creating, retrieving,
updating, or deleting a user).

○ It uses RDS Proxy to establish a connection to the Aurora database, ensuring
efficient use of database connections and reducing latency.

3. Database Operations:
○ Lambda functions interact with the Aurora MySQL database for all data

persistence needs.
○ RDS Proxy manages database connection pooling, minimizing overhead and

handling failover in case of connection issues.



4.4.2.3 Detailed Overview (Static Website Hosting)

The architecture is designed to host a static website on AWS using Amazon S3, CloudFront,
and Route 53. The stack includes components for content delivery, security, and automated
bucket management. Amazon S3 stores static content, CloudFront is the content delivery
network (CDN) for fast and secure access, and Route 53 provides DNS management for the
custom domain.

4.4.2.3.1 Key Components and Their Roles
1. Amazon S3:

○ Role: The primary storage for the website’s static assets (HTML, CSS,
JavaScript, images, etc.).

○ Configuration:
■ The S3 bucket is configured to block all public access, ensuring the

content is only accessible via CloudFront.
■ Objects are auto-deleted through a custom Lambda function to manage

and clean up objects when necessary automatically.
○ Bucket Policy: Configures permissions to allow CloudFront to retrieve objects

from the bucket securely.
2. CloudFront:



○ Role: Provides a globally distributed content delivery network to ensure
low-latency access to the website’s static content.

○ Configuration:
■ Uses an SSL certificate for secure HTTPS connections, enforcing

TLSv1.2 and above.
■ Configures custom error responses, such as a 403 response directing to

error.html.
■ Caches content for improved performance and minimizes requests to the

S3 bucket.
■ Restricts access to the S3 bucket via Origin Access Control (OAC),

preventing direct public access to S3.
■ The ViewerProtocolPolicy is set to redirect to HTTPS to enforce secure

connections.
3. Route 53:

○ Role: Manages DNS records to route traffic to the CloudFront distribution.
○ Configuration:

■ An alias record links the custom domain (www.dripdropco.com) to the
CloudFront distribution, enabling access via the custom URL.

■ Uses hosted zone information to configure the DNS correctly for
CloudFront.

4. AWS Certificate Manager:
○ Role: Manages the SSL/TLS certificate for secure HTTPS connections.
○ Configuration:

■ The certificate is validated using DNS with Route 53.
■ Applied to the CloudFront distribution to enable SSL/TLS encryption.

5. Lambda Function for Auto-Delete:
○ Role: A custom resource for automatically deleting objects within the S3 bucket.
○ Configuration:

■ A Lambda function, triggered by AWS custom events, deletes objects in
the S3 bucket as needed, helping with storage management.

■ Runs with the AWSLambdaBasicExecutionRole for necessary
permissions.

4.4.2.3.2 Internal Operations and Flow
1. User Access:

○ Users access the website via www.dripdropco.com.
○ Route 53 directs traffic to the CloudFront distribution, which serves the static

content stored in the S3 bucket.
2. Content Delivery:

○ CloudFront fetches content from the S3 bucket when not cached and serves it
from edge locations, reducing latency and improving load times for global users.

○ Only CloudFront has permission to access the S3 bucket, controlled via OAC and
bucket policies, ensuring secure access to website resources.

3. Error Handling:



○ Custom error responses in CloudFront direct users to error.html in case of a 403
(Forbidden) error, enhancing the user experience.

4. SSL/TLS Security:
○ SSL/TLS is enforced by CloudFront using the certificate issued by AWS

Certificate Manager, ensuring encrypted and secure connections.
5. Automated Cleanup:

○ The Lambda function automatically deletes objects within the S3 bucket as
specified, managing storage and ensuring the bucket remains clean.

4.4.2.3.3 Security and Access Control
● IAM Roles and Policies: Each Lambda function is associated with an IAM role that

grants it access to the necessary resources, including permissions to retrieve secrets
from Secrets Manager and access the database through RDS Proxy.

● Security Groups: Lambda functions and the Aurora MySQL database are assigned
security groups that define the inbound and outbound traffic rules, restricting access to
only what’s necessary for each component.

● Bucket Access Control: The S3 bucket blocks all public access, and only CloudFront
can access it via Origin Access Control.

● CloudFront Security: The CloudFront distribution is configured to enforce HTTPS,
redirecting all HTTP requests to HTTPS and ensuring secure connections.

4.4.3 Functionality
Overview: dripdrop is meant to be an easy-to-use, understand, and operate social media
platform that allows users to have a singular place to find outfits they like, cheaper options for a
similar look, and the ability to earn points for sharing their outfits with others. To achieve these
goals, we have designed the UI to be easy to understand and navigate for any user, as it is
intuitive and easy on the eyes. We have also decided on functionality to provide users with
solutions to these desires.
UI: For the UI, we have made original sketches to get an idea of what our UI should look like so
that we can be consistent and all come to a consensus on major design decisions. By doing so,
we can create an intuitive and straightforward design that all users can easily understand and
use. For example, if a user wants to find a specific function or section of the application/website,
the navigation naming is straightforward so it should be easy to find.
Feed: For users to find outfits they like, we will have a feed, the first page shown upon entering
the website or the application, displaying popular outfits for the user to scroll through and find
something they like. Users can also follow other users if they have a style they like, and they
can save specific posts if they want to return to those outfits later.
Product Suggestions: We have used AI to implement said functionality to find cheaper options
for a similar look. Using AI, we can tag various products and then use those tags to find similar
products to the current product, at cheaper prices. If a user were to navigate to an apparel item
that they like, but the price is too high, they can simply look below the product listing and see
the suggested similar products section. This section will have similar apparel items so the user



can quickly scroll through these similar products and find something else they like at a cheaper,
more affordable price.
Reward System: Rewarding the users who post outfits is an important aspect of our social
media platform. That is how we attract users and how they can make money from simply
sharing their outfits with everyone else, regardless of their following. A user simply has to post
their outfit and provide the links to the products, and we can use our partnerships to earn money
from other users purchasing said outfit from the provided links. This results in us earning
commissions and the poster earning dripdrop points which can be used towards purchasing
apparel items.

4.3.4 Areas of Concern and Development

Our current design satisfies many of the user's primary requirements and needs. Some of the
requirements we are confident about satisfying include the ability for users to sign up/login for
accounts and to view and create posts for other users to see in the feed. Additionally, we will
integrate the “following” feature within the next couple of weeks to allow users to follow each
other and prioritize their following list on their post feed. Further, we have added profile pages
where users can view each others’ profiles and posts. We will also introduce user and profile
settings over the next few weeks, including changing the username and password, whether a
profile is public or private, and other basic settings.
While we feel strongly that we will have many of our users’ needs satisfied by the end of the
semester, there are some areas of concern that we think will take longer to resolve. One of the
most significant issues we’re facing is the ability to tag individual articles of clothing when
making a post, discovering new items, and finding deals for those items. This process requires
gathering information from the brand’s website, which is difficult because there are a lot of
different brands of clothes, each with varying formats of website, making it hard to automate the
data collection process through practices like scraping. A solution we think will help to alleviate
these difficulties is to start by offering a handful of more prominent brands to be tagged,
automating the data collection process for those websites, and gradually expanding our offering
rather than having an extensive collection all at once. We believe that we will be able to
accommodate at least ten different brands along with their catalogs by the end of the school
year.
Another area of concern that we have is regarding our AI integration. Our design promotes a
custom-built AI model that will be able to identify specific articles of clothing and their
corresponding brands within a post to help simplify the tagging process. However, due to the
vast number of brands and types of clothes, it will be difficult to train our model to be sufficiently
accurate by the end of the school year. One of the solutions we discussed was to simplify our AI
model to identify essential features of individual articles of clothing (like “black t-shirt” or “ripped
light blue jeans”) rather than having the model guess the brand. From there we could create a
script to correlate these tags to an item in our database with similar tags and order by popularity
to give a reasonable estimate of the item.
Our final primary concern concerns our concept of “dripdrop points” earned through affiliate
links. While we feel this could be a relatively easy integration, we need to research what
companies offer referral codes and the logistics of using referral codes. Additionally, we need to



discuss further the primary motivation for users to use the app and find a good balance of
offering posting incentives while preventing over-monetization and spam. We also feel that this
feature won’t be released later once we have an established user base, many brands, and
potential referral codes to work with. We would appreciate it if our TAs or faculty advisers have
any insights or opinions on ways to incorporate a referral system.

4.4 Technology Considerations
Overview: We had some critical technology decisions to make since this would decide the
entire structure of our social media platform. This could and would directly impact possibilities,
costs, and opportunities as certain options would excel in areas that others would not. We first
decided to use AWS as our cloud provider, AWS Aurora for our database, and React for our
front end.
AWS: We decided on AWS as our cloud provider due to its flexibility and scalability. Some of the
most important strengths AWS has that are crucial to our project are the AI capabilities we need
for our product recommendations, the speed and scalability of AWS if we need scalability in the
future, and the platform's reliability is crucial. However, AWS does have more complex pricing
than alternatives and generally has a steeper learning curve. The pricing is not a massive issue
as the benefits that AWS provides far outweigh the cons of pricing. As for the steeper learning
curve, this only proves to be an issue initially; however, using AWS's extensive documentation,
we can get past this issue, and it will no longer be an issue.
AWS Aurora: For our database, we decided on AWS Aurora over other options, such as
MongoDB, due to the performance and scalability of AWS Aurora and how seamlessly it
integrates with AWS, which is what we previously chose for our cloud provider. Further, the
security and chance of database corruption is much better on AWS Aurora than on alternatives.
However, AWS Aurora has weaknesses in that document storage is not very flexible, the cost
can be quite high, and it sort of locks us into using AWS as our cloud service. The document
storage issue can easily be solved by using S3 Buckets for images; no other aspect of our
design will cause issues here. For the cost, this is a hit we are willing to take, as, similar to the
cloud service, the scalability and performance of AWS Aurora over alternatives is worth the
higher cost. Finally, for it locking us into AWS as our cloud provider, that should not be an issue
as we do not foresee needing to change.
React: For the front-end development, we chose React over alternatives such as Angular. The
reason we chose React is because it is component-based which leads to more modularity and
reusability, the fast and efficient UI updates, the flexibility of React, and the large community and
extensive documentation for reference if we face issues. On the other hand, React does have
its downsides in that it relies on a third-party library, given React is a JS library and can need
other libraries for various functionality, and inconsistencies can arise due to a less structured
approach. Library dependency should not be much of an issue as this can be a benefit in that
we can pick and choose the tools we need without incorporating unnecessary dependencies.
Further, we have more flexibility regarding our tools, which can lead to more possibilities. Finally,
React being less structured should not lead to inconsistencies for us as we have planned this
out ahead of time and are sure to update the team with design choices continuously.



4.5 Design Analysis
We have made solid progress in creating our app's overall framework. We currently have a
working AWS-hosted server that supports our app and have implemented a good portion of the
back and front end.

We have created some tables we will need for the app's backend. More tables will be created,
but the Users, Posts, Images, and Followers tables work. We have working lambdas for all
these tables, including GET, POST, DELETE, and PUT requests. These lambdas have been
tested on the AWS console or using Postman, and they all work correctly.

For our API, we have a few API endpoints called, including one for getting posts to put into the
feed and another for generating the profile page for a user. We plan to implement the rest of the
API structure soon.

On the front end, we have pages for signing in and signing up. These are currently functional
and prompt users for specific sign-in information to let them sign in. We also have a home page,
a search bar, a create posts page, and a user profile page. These are all basic pages right now
and do not yet contain the data we would want in our end result, but they have the basic design
and outline created in React.
So far, we have only run into a few errors. The testing has passed for all of our requests, but we
have a lot of testing left to do. We did have an issue with the backend getting out of sync
between the console and the files and this created errors when we were testing lambdas, but
this has been resolved.

Our backend was convoluted, so we plan to restructure it more efficiently. Instead of all backend
requests for each table being in different files, we want to have one handler for each table, and
the handler will be able to determine the type of request and then call the specific code for that
request. Other than that, the plan is to move forward as planned, continue fleshing out the front
end and the API more, and then diagnose issues with file structuring or implementation methods
as we come across them.

5 Testing
Testing is essential to most projects involving a circuit, a process, a power system, or software.

The testing plan should connect the requirements and the design to the adopted test strategy
and instruments. In this overarching introduction, give an overview of the testing strategy and
your team’s overall testing philosophy. Emphasize any unique challenges to testing for your
system/design.



5.1 Unit Testing
Our unit testing can be broken into three categories: backend, frontend, and API. We have not
implemented any testing yet, but once we do, we plan to insert the unit tests into our pipeline to
ensure that new changes don’t break existing functionality.

Backend Testing

The backend units involve all the database functions for each table and all the business logic
functions we implement. We will use standard unit testing by testing each function individually
with controlled/mocked inputs. It will be essential to test edge cases and invalid input. We will be
using Pytest, a testing framework for Python, to write these tests.

Frontend Testing

The frontend units contain all user interface components (buttons, forms, navigation, etc). To
test these units, we will include component-level testing and tests that simulate user interaction.
The tool we will use for this section is Jest, a react testing library.

API Testing

The units for our API consist of our API endpoints. We will send mock requests to these
endpoints to test these units and verify the response. Pytest includes a request module for
automating API testing and validating responses.

5.2 Interface Testing
Interface Overview: The project’s four primary interfaces are the React-based Frontend, API
Gateway, lambda functions, and the database. The first component, the frontend, uses React as
its framework and is how users interact with the platform. Secondly, the API Gateway will allow
for communication between the front and back end. For example, when a user follows
someone,then a request will be made to the backend via the API Gateway to store that follow in
the database, and the same for all other user-based actions and all CRUD operations. Next, the
lambda functions perform the backend functionality, which is what the API Gateway “calls” to
perform the request. These functions directly interact with the database. Finally, the AWS Aurora
database is how all of the platform’s information is stored, including, but not limited to, user
accounts, post information, images, and clothing items.

Testing Unit Composition: Three primary compositions exist to test all of the interfaces
properly. Firstly, the communication between the front (React) and the API Gateway can be
tested by ensuring that the appropriate API request is sent when a user interacts with the
platform and that said response is handled properly. This is tested, in part, by Bruno to ensure
API response behavior and, in part, by frontend testing to ensure the correct API calls are
triggered.

Beyond this first composition, the connection between API Gateway and the lambda functions
must be tested such that the API triggers the correct lambda functions and the correct inputs
and outputs are given/received. Once again, Bruno can be used for testing to disregard the front



end to narrow the testing scope, and AWS Console can be used to test API calls manually and
even lambda functions.

Finally, the third composition is between the lambda functions and the database. This must be
adequately tested to ensure that CRUD operations are happening as expected and are correctly
stored in the database. To test this, Bruno can be used again to test at the API level, AWS
Console for testing lambda functions more directly, and MySQL Workbench to ensure the
database saw the desired changes.

5.3 Integration Testing

The project has two primary critical integration paths:
● React API Gateway Lambda Functions Database↔ ↔ ↔

○ Criticality: This path describes the core functionality of the social media platform
involving all CRUD operations the user can perform on the platform, except any
image based CRUD operations. If this path does not work as intended, most of
the platform will not work aside from the visual aspect.

○ Testing:
■ React Testing Library: Confirms that the front end sends the correct API

requests and handles any responses received.
■ Bruno: Ensure API request and response behavior is working as

expected.
■ AWS Console: This may be used to perform more direct tests for the API

and lambda functionality.
■ MySQL Workbench: Used to ensure that the database was altered as

expected.
● Database S3 Bucket↔

○ Criticality: When combined with the previous path, this path describes the final
step to allow CRUD operations for images. This path must work as intended to
store images, one of the most critical aspects of the platform.

○ Testing:
■ AWS Console: Confirms that S3 bucket operations are being performed

by lambda functions correctly.
■ MySQL Workbench: Used to ensure that the database is appropriately

referencing the correct S3 objects.
■ S3 in AWS: May be used to confirm that images are being correctly

uploaded to the S3 Bucket upon request.

5.4 System Testing

Unit Tests



For unit tests, the primary focus is to test individual components and isolate issues. To do this,
there are a few key tests, such as testing the UI elements and all frontend functionality using
React testing libraries such as Jest. Beyond the frontend testing, the backend will also need to
be tested using similar testing strategies to ensure the logic works as intended, the database
can be edited appropriately and read, and S3 functionality. Most backend unit testing can be
done via a tool called Pytest for testing python file functionality. Having confirmed frontend and
backend functionality, the connection API needs to be tested in an isolated manner, using tools
such as Pytest to create mock endpoints and properly isolate the API functionality for testing.

Interface Tests

Interface tests ensure functionality between two components, such as between the React
frontend and the API Gateway, between the API Gateway and lambda functions, and between
the AWS Aurora database. The key tests here ensure the database can be properly accessed
and edited, as needed, and that React sends the proper requests and adequately handles the
responses. Tools such as Bruno, AWS Console, and MySQL Workbench may be used for this.

Integration Tests

The primary focus of the integration testing is to ensure that the entire system works from one
end to the other, so from the React frontend all the way to the database and back. Ensuring
functionality here is crucial to ensuring the overall functionality of the platform. Helpful tools for
this sort of testing include Bruno, MySQL Workbench, and React testing libraries.

System Tests

At the system level of testing, the focus is on ensuring the entire platform works, not only for
functional and non-functional requirements. The primary testing here is for scalability, to ensure
high traffic can be adequately handled, performance to ensure fast and reliable functionality, and
reliability to ensure that it does not break often. Though the non-functional requirements listed
are highly important, the functional requirements must also be tested at this stage. Tools such
as AWS CloudWatch and load testing tools such as Apache JMeter could be used to perform
this crucial testing.

5.5 Regression Testing

Preventing Regression: To ensure that new additions do not break old functionality, general
testing guidelines have been put in place so that when something new is added, all old
functionality that could be affected by this change must either be automatically or manually
tested. This ensures that old functionality does not see any issues due to new functionality
being implemented.

Critical Features: The primary critical features that must not break under any circumstance are
the ability to connect the frontend to the backend for all CRUD operations, which involves
ensuring the functionality of all core API endpoints, the feed to ensure that any user will not



have interruptions in their primary experience on the platform, scrolling through their feed, and
the ability for users to upload their images, text, etc. so that they never experience interruptions
in creating posts, accounts, etc. Almost any portion of the platform that directly interacts with or
affects user experience should remain intact throughout development.

Tools Used: The primary tools used to ensure functionality throughout development are React
Testing Library, to ensure frontend functionality; Bruno, to ensure API and backend functionality;
and CloudWatch Logs, to ensure backend behavior. More tools used are MySQL Workbench to
ensure the database sees the changes it should, AWS Console for more manual testing, and
some automated CI/CD testing of the frontend to ensure basic functionality.

5.6 Acceptance Testing
Functional Design Requirements:

Each component must be tested and validated to ensure that the system’s functional
requirements are met. The API features should be tested to confirm the correct functionality of
CRUD operations for users, posts, images, and other related entities. This includes verifying
that the Lambda functions triggered by API Gateway interact seamlessly with the database and
S3 buckets, as defined in the AWS CDK construct. Using S3 bucket and Cloudfront, the static
website hosting solution must be evaluated for accessibility, HTTP redirections, and DNS setup
through Route 53. The image optimization features must also be tested to validate image
uploads, transformations, and CloudFront caching.

Non-Functional Design Requirements
Non-functional requirements are validated by assessing scalability, security, and maintainability.
Scalability is tested by stress testing the APIs and ensuring that CloudFront’s caching
mechanism optimizes performance under increased loads. Security is reviewed by analyzing
IAM policies to verify that resources are only accessible to authorized entities. Maintainability is
highlighted through the system's modular architecture, where APIs, static sites, and image
optimization are handled separately for better management and updates.

Client Criteria/Involvement

Client involvement begins with presenting test cases that clearly outline how each requirement
is validated. Deploying the system in a staging environment allows the client to access and
review the static site, API endpoints, and logs. During user acceptance testing, the client is
encouraged to interact with the APIs and navigate the static site to confirm the functionality and
user experience. Feedback from these interactions will be used to refine our system. The will is
also provided with performance metrics, such as the logs from AWS Cloudwatch, and security
audit results to show compliance with industry standards. Regular updates through dashboards
or progress meetings will show transparency and keep the client informed.



5.7 Security Testing
Requirement: The system must ensure the confidentiality, integrity, and availability of all user
data, adhering to best practices and compliance standards for secure application development.

Testing Plan

To validate security compliance, the following tests will be conducted:

● IAM Policy Review: Confirm least privilege access for all resources.
● Penetration Testing: Simulate attacks to identify vulnerabilities in APIs, S3 buckets, and

the network configuration.
● Encryption Validation: Verify that all data at rest and in transit is encrypted.
● Vulnerability Scanning: Use tools like Amazon Inspector to identify security risks.
● Access Logging: Ensure logs are capturing all access events and analyze for

anomalies.

Expected Outcomes

● Unauthorized access attempts should be blocked entirely.
● Data breaches or exposures should be mitigated by encryption and strict access

policies.
● System components must remain operational and secure under simulated attack

scenarios.
● Compliance with industry standards like ISO 27001 and AWS Well-Architected

Framework security guidelines should be demonstrable.

5.8 Results
Since testing has not yet begun, there are no direct results to report. However, the foundation
for testing is being meticulously prepared to ensure a comprehensive evaluation once the
system is ready. The planned testing framework will focus on both functional and non-functional
requirements to demonstrate compliance with project goals and user needs.

Planned Testing Approach

The testing strategy is structured to provide both quantitative and qualitative insights into the
system's performance. Functional tests will evaluate the core capabilities, such as CRUD
operations for users and posts, API Gateway-Lambda interactions, and static website hosting
via S3 and CloudFront. Non-functional tests will measure scalability, security, and
maintainability, emphasizing metrics like API response times, error rates, and system uptime
under stress conditions.



For qualitative insights, user acceptance testing (UAT) will be crucial. This phase will engage
stakeholders to validate that the system meets their expectations and effectively addresses their
needs.

Demonstrating Compliance

The results from these tests will be analyzed to confirm compliance with the design
requirements:

● Test cases will verify functional compliance by showing that each feature works as
specified.

● Performance compliance will involve stress tests to ensure the system handles
expected loads and beyond.

● Security compliance will include IAM policy reviews and penetration testing to
safeguard sensitive data.

● Usability compliance will be assessed during UAT, with user feedback informing
refinements.

Next Steps

To move forward, the immediate focus is on:

1. Finalizing the test cases and scripts for automated and manual testing.
2. Deploying the system to a staging environment where all components—APIs, static site,

and backend services—can be integrated and tested.
3. Gathering client input ensures the testing plan aligns with user expectations and project

objectives.

Following this structured approach, the forthcoming testing phase will provide detailed results
that substantiate the system's alignment with technical requirements and user needs.

6 Implementation

This semester, we started working on our application's web platform and the backend database
to support it. The first aspect of our application that we developed was a preliminary login and
sign-up screen. The user can log in with their email address and password. During the signup
process, users submit information, including their email address, desired username, and desired
password.



Login Page

Sign Up Page

Additionally, we have added a home page that displays a feed of posts along with a sidebar that
navigates to other pages and features, including user search, notifications, and filtering features,
along with pages for posting and viewing lists/collections of saved posts. The posts displayed on
the feed currently comprise of a photo, the user who posted it, the caption, and placeholder
icons for features to like, bookmark, and comment on the post. These features will be built out
early on in the second semester.



Home page

We currently have early implementations of the home page, search bar, and posting page and
will work to expand our implementations next semester.
Our final preliminary implementation is the user profile page, which will showcase basic user
information, including name, username, profile picture, and follower/following count. Posts from
the user can be viewed on this page as well. This page is dynamic and can be accessed
through the user search bar or by clicking on the username within a post.



User Profile page

7 Ethics and Professional Responsibility

7.1 Areas of Professional Responsibility/Codes of Ethics

This discussion concerns the paper by J. McCormack and colleagues titled “Contextualizing
Professionalism in Capstone Projects Using the IDEALS Professional Responsibility
Assessment”, International Journal of Engineering Education Vol. 28, No. 2, pp. 416–424, 2012

Area of Responsibility Definition SE Code of Ethics How we have addressed this

Work Competence Work is completed to a
high-quality standard and
adheres to best practices
for software development.

PRODUCT: "Ensure that
products meet the highest
professional standards
possible."

We use AWS documentation to
conform to their best practices. We
use industry standards for our API
return statements. More focus will
be needed on our quality in the next
semester.

Financial Responsibility Managing our resources
efficiently and avoiding
unnecessary spending.

CLIENT AND
EMPLOYER: "Act in the
best interests of the client
and employer consistent
with the public interest."

We communicated with ETG to get
our AWS account and budget. Our
budget is set in AWS, so we get
alerts when we review our monthly
target and adjust accordingly.



Communication Honesty Being transparent and
truthful in all
communication

JUDGMENT: "Maintain
integrity and
independence in their
professional judgment."

We give everyone a chance to
speak at our weekly standup, and
we are all honest about our
contributions.

Health, Safety, and Well-Being Protecting users from
harm and promoting their
mental and emotional
well-being when using the
app.

PUBLIC: "Act consistently
with the public interest."

At this point we just have a
prototype, but we will need to focus
on protecting user data and
restricting harmful comments/posts
next semester.

Property Ownership Respecting intellectual
property rights and
acknowledging outside
resources we use

PROFESSION: "Advance
the integrity and
reputation of the
profession consistent with
the public

If we use other people’s work, we
will make proper attributions to that
borrowed work.

Sustainability Designing the app to be
efficient, minimizing
resource usage, and
supporting long-term
maintenance.

PUBLIC: "Act consistently
with the public interest."

Next semester, one of our big
focuses will be on improving the
speed and efficiency of our app. At
this point we have been focused on
just getting an MVP.

Social Responsibility Considering the app's
impact on society,
including user privacy and
ethical use of data.

PUBLIC: "Act consistently
with the public interest."

We have some security measures,
and we will make thorough security
measures once we have completed
an MVP for our demo.

Areas we are performing well: Communication, Honesty

Our team exhibits open and transparent communication with each other. We hold regular
meetings to discuss progress, share updates, and address challenges. These discussions are a
collaborative environment where all team members feel comfortable voicing their concerns and
providing feedback. When we meet with our faculty advisor, we are open and honest about our
progress updates and don’t fake anything.

An area where we can improve: Work Competence

Currently, our team has been focused on learning and growing our skills. There has been a lot
of trial and error and emphasis on getting a Minimum Viable Product done by the end of the
semester. There has not been a big focus on high-quality work or conforming to standards. As
we enter our second semester, we can work on elevating the standard we expect out of our
work. We can also improve our prior work to increase the quality. To improve, we should
implement more rigorous quality assurance processes, such as automated testing and peer
code reviews.



7.2 Four Principles

Beneficence Nonmaleficence Respect for
Autonomy

Justice

Public health,
safety, and
welfare

It’s a good social
outlet for creative
expression that is
good for mental
health.

Avoiding addictive
algorithms that
encourage
doom-scrolling

Allowing users to
choose who their
profile and posts are
shown to to protect
privacy and safety

Making sure
everyone’s
usage of the
app is safe for
their mental
health.

Global, cultural,
and social

Allows users to
share their sense of
fashion with the
world and inspire
others

Not allowing hateful
comments and
speech to promote a
safe and positive
social environment

Users will get a feed
tailored to their
interests, and they
can choose which
posts they want to
interact with

Ensuring
everyone on
the app is
treated kindly
and with
respect

Environmental Encourages users to
shop for and
discover
environmentally
healthy and
sustainable products

Avoiding business
practices that
negatively contribute
to the environment

Allowing users to find
environmentally
conscious clothing
articles

Giving
everyone
opportunities to
choose from
sustainable
materials and
clothing
articles.

Economic Allows consumers to
find cheaper, similar
outfits quicker

We avoid
subscriptions that
suck people in

Giving consumers
more budget-friendly
options to choose
from

Everyone can
earn dripdrop
points from
getting people
to purchase
apparel items

Where our project shines: Beneficence + Economic

Our app's core feature and purpose is the ability for clothing item comparisons and suggestions.
When users see an outfit they like, our app improves their shopping experience by showing
them similar items and helping them save money by showing lower-priced items. When a user
shares an outfit that they enjoy wearing, they can share it with the world for more people to also
enjoy.

Where our project is lacking: Nonmaleficence + Public health, safety, and well-being

For a social media app to perform well, there must be a draw to keep users returning. Many
social media apps thrive on addictive doom scrolling. It will be challenging to balance creating



an app that promotes much user interaction but doesn’t create addictive tendencies. To improve
in this area, we could add a feature that checks in with users when they hit usage benchmarks
that are considered unhealthy.

7.3 Virtues

Our Team’s Important Virtues:

Cooperativeness - To support cooperativeness, we regularly meet as a team and communicate
often in discord. Our meetings are very productive and everyone gets to contribute to the
discussion. We leverage each person’s strengths when we divide up our tasks.

Responsibility - To support this virtue, we set expectations for when we want to complete
assignments, and we break up the tasks among team members. Everyone is dependable and
gets their work done on time.

Respect - This virtue is very important to our team because we have a lot of very bright
members on our team with varying strengths. Disrespect is not tolerated on our team, and all
discussions is constructive and supportive.

Individual Virtues we have demonstrated:

Kolby - Clear Communication and Documentation

This virtue is important to me because it is very crucial when working in team settings. It can
have a significant impact on how much a team can accomplish. Documenting and
communicating effectively and often can make the lives of everyone on the team much easier. I
have demonstrated this virtue by creating documentation for the areas I have worked on,
regularly providing updates on Discord, and scheduling/organizing meetings.

Logan - Commitment to Quality

Quality is a crucial aspect of any project, as putting effort into creating quality work from the
beginning can prevent future headaches. It can also directly impact the motivation of a team if
they see that others are not putting forth quality wor,k which can lead to them not putting forth
quality work, resulting in lower-quality work all around. Focusing on quality work upfront can
prevent future issues, motivate teammates, and promote a better end result. I have
demonstrated this virtue by ensuring that all of the work I do on the project is of high quality and
is approved by most of the team.

Kaden - Commitment to quality

Ensuring that a product is completed efficiently and to a high standard of quality has been a
core principle I’ve strived to uphold throughout this course. In a team environment, where
multiple people contribute to the same code and documentation, it’s essential to produce work



that is clear, collaborative, and of a standard others are proud to endorse. One guiding quote
resonates with me: "How you do anything is how you do everything.” This philosophy reflects
my belief that whether it’s a small writing task or a large coding project, maintaining the highest
level of quality is always crucial.

Zach - Collaboration

The idea for our project was not decided all at once but over time through listening to the ideas
of teammates, teachers, and faculty mentors. Through collaborating and considering various
ideas and perspectives, I took on a lead role in fine-tuning the initial project idea from the
beginning of the semester down to the current idea of dripdrop. Collaboration and allowing open
thought helped us construct our app idea and have been a crucial point of development
throughout the semester, as often multiple team members must work together on parts of the
project. I have worked on both the backend and frontend so far, and for both portions of work I
have collaborated with other team members to learn from each other and ensure consistency of
coding practices.

Gavin - Commitment to intuitive user experience

The most important aspect of any application is the user experience and its clearness. If a
design is unclear and unintuitive, users are often frustrated and confused and less likely to
continue using the app. That is why I have taken on a significant role in designing the user
interface in a way that’s both visually attractive and easy to understand. Along with having an
intuitive interface, it was also important to me that our app is performant and quick, which goes
along with the virtue of commitment to quality.

Elyse - Commitment to objectivity

In designing and creating cloud infrastructure on AWS for our group project, my commitment to
objectivity remains a core guiding principle. I focus on evidence-based decision-making, using
data-driven insights to ensure our architectural choices meet the technical goals and
requirements of the project. By adhering to standardized best practices, such as the AWS
Well-Architected Framework, we prioritize security, reliability, performance efficiency, and cost
optimization. Setting aside personal preferences, I work collaboratively with the group to
evaluate options impartially and align decisions with the overall objectives of the project. This
objective approach improves teamwork, ensures fairness, and helps us create a robust and
scalable infrastructure.

Individual Virtues we have not demonstrated:

Kolby - Commitment to Objectivity



This virtue is important to me because I know everyone on this team has a lot of great ideas and
knowledge and it is important to treat all ideas without my preconceived opinions. To
demonstrate this, I will focus on hearing everyone out thoroughly, and not tune out when ideas
that conflict with my opinions are voiced.

Logan - Clear and Thorough Documentation

Clear and thorough documentation is paramount to everyone’s understanding. Given proper
documentation, one can easily go through and understand what someone else created with
minimal time and effort on their part. However, without proper documentation, it can be hard for
someone who is not well versed in the field to understand resulting in more time and effort
wasted. I believe that, moving forward, I need to focus more on providing proper documentation
on the work that I complete to ensure everyone has a proper understanding.

Kaden - Techno-social Sensitivity

Our group formed before the semester even began, and we submitted a custom project that
aimed to create a Chrome extension for finding discounts through data scraping. However,
realized two to three weeks into the semester that similar solutions already existed, and we
needed a way to differentiate our project, leading us to pivot. Greater awareness of existing
products could have allowed us to identify this issue earlier, saving time and resources. This
experience showed me the importance of conducting thorough research in the competitive
landscape to understand user needs better, ensuring projects are both innovative and impactful.

Zach - Continuous Improvement

One virtue I need to work on moving forward is continuous improvement. The best applications
in the market are not always great right when released, but the initial release is a foundation that
can be built on. Instead of programming in a way that simply tries to get the functionality right
the first time, I need to integrate into my code the ability to adapt over time. This includes
ensuring best coding practices are followed so that code can easily be read and built upon over
time. It also means creating functions in a way that is easily repeatable and universal so that a
consistent structure can be followed as the app grows and improves.

Gavin - Clear and thorough documentation

One of the virtues that I haven’t sufficiently utilized this semester and need to improve on next
semester is the virtue of having clear and thorough documentation for my code and
contributions. Oftentimes I overlook that my code might be iterated on by other developers who
may be confused with my coding style or reasonings, which slows down the development
process. Thus, I need to work on adding comments to my code and explaining the limitations
and proper uses/implementations of my code and components that I may develop next
semester.

Elyse - Clear and Thorough Documentation



I often find myself struggling with the virtue of clear and thorough documentation, as I tend to
prioritize completing tasks over documenting the processes and decisions behind them. While I
understand the importance of detailed documentation in improving reproducibility, clarity, and
ease of collaboration, I sometimes find it challenging to balance this with the technical demands
of the project. This can lead to gaps in understanding when refactoring previous work or
explaining decisions to team members. To improve, I plan to integrate documentation as an
active step in my workflow rather than treating it as an afterthought.

8 Closing Material

8.1 Conclusion

Summarizing what we have done so far, our team currently has a working AWS Aurora server
hosting our database and website. We have a primarily functional backend, including all of the
needed lambdas for user functionality. Our team has a frontend that allows users to view their
feeds, create posts, and search user profiles. Additionally, the team currently has a working AI
model that can tag different attributes of apparel items in an image and recognize the items
apart from each other.

Our goal is to have a working website with the basic functionalities by the end of this semester.
Additionally, we want a working mobile application by March of next semester and a working AI
outfit-matching model by the end of next semester. So far, the main constraints have been
finding the time between all the other commitments as a college student to develop an entire
application. Additionally, there are a lot of new concepts for our team to learn, the the
development has been a slower process.

As the team progresses on development, we will continue focusing on continuous improvement
and following Agile methodologies. For the design, we will transition next semester from
focusing mainly on functionality - as we primarily focused on this semester - to additionally
focusing heavily on application speed and usability.

8.2 References

AWS Official Documentation

Amazon Web Services, "AWS Documentation," [Online]. Available:
https://docs.aws.amazon.com/. [Accessed: Dec. 07, 2024].

TypeScript Official Documentation

Microsoft Corporation, "TypeScript Documentation," 2024. [Online]. Available:
https://www.typescriptlang.org/docs/. [Accessed: Dec. 7, 2024].

https://docs.aws.amazon.com/
https://docs.aws.amazon.com/


Python Official Documentation

Python Software Foundation, "Python Documentation," 2024. [Online]. Available:
https://docs.python.org/. [Accessed: Dec. 7, 2024].

GitLab Blog Article

GitLab Inc., "How to Deploy a React Application to Amazon S3," GitLab Blog, Mar. 1,
2023. [Online]. Available:
https://about.gitlab.com/blog/2023/03/01/how-to-deploy-react-to-amazon-s3/.
[Accessed: Dec. 7, 2024].

Material-UI Official Documentation

MUI, "Material-UI: React Components for Faster and Easier Web Development," 2024.
[Online]. Available: https://mui.com/material-ui/. [Accessed: Dec. 7, 2024].

PyTorch Vision Documentation

PyTorch, "TorchVision: PyTorch's Computer Vision Library," 2024. [Online]. Available:
https://pytorch.org/vision/stable/index.html. [Accessed: Dec. 7, 2024].

Ultralytics Documentation

Ultralytics, "Ultralytics Documentation," 2024. [Online]. Available:
https://docs.ultralytics.com/. [Accessed: Dec. 7, 2024].

IDEALS Professional Responsibility

J. McCormack, "Contextualizing Professionalism in Capstone Projects Using the
IDEALS Professional Responsibility Assessment," Int. J. Eng. Educ., vol. 28, no. 2, pp.
416–424, 2012.

https://docs.python.org/
https://docs.python.org/
https://about.gitlab.com/blog/2023/03/01/how-to-deploy-react-to-amazon-s3/
https://about.gitlab.com/blog/2023/03/01/how-to-deploy-react-to-amazon-s3/
https://mui.com/material-ui/
https://pytorch.org/vision/stable/index.html
https://pytorch.org/vision/stable/index.html
https://docs.ultralytics.com/
https://docs.ultralytics.com/


9 Team

9.1 Team Members
1) Kaden Wingert 2) Kolby Kucera
3) Zachary Foote 4) Logan Roe
5) Elyse Kriegel 6) Gavin Rich

9.2 Required Skill Sets for the Project

Software Development Skills:

Frontend: Experience with frontend programming, specifically with React, typescript,
and CSS, will be essential for creating the pages for the frontend. These skills are needed to
create a polished frontend that can display a smooth interface for users.

Backend: The project requires the ability to create backend Python files that will
interface with the database. Knowledge of creating backend lambdas that can be called at an
API endpoint is needed.

API: The team's developers will need to be able to create APIs that connect the frontend
with the back end. Full-stack web development knowledge will be required within the team to
understand how the APIs work and how to implement them properly.

SQL: SQL skills will be needed to interface with our MySQL database. Knowledge of
how to query and what information can be stored in an SQL database will be needed.

Amazon Web Service (AWS): AWS knowledge will be needed to host both the mySQL
database (for the storage of regular items e.g., account info, posts, passwords, and usernames)
and S2 bucket items (images). To set this up in a proper and cost effective way and to know
which resources would be the best for our team to utilize, the team will need experience with
AWS.

AI-Model Creation Skills: AI model skills and experience will be needed to create the view
similar items page. The team is working to create an AI model from scratch that can tag the
photos based on the traits of the clothing items in the image. To do this, the team will need
experience with working with AI models so that there is a foundation of knowledge to build off of
in the development of Dripdrop’s model.

Entrepreneurship Skills: The team also requires entrepreneurship skills. This is because the
team will need to pitch the idea to large retail companies to create partnerships, an essential
part of the dripdrops business model. Additionally, the team will need to create an initial user



base for the app, and the best way to do this is by speaking to people and convincing them that
dripdrop will benefit them to use.

Leadership Skills: Leadership skills are required for the team to have effective meetings and
communication. Individuals who can effectively keep the group's tasks and goals in check and
take the lead in group meetings allow the entire group to function effectively and thoroughly.

9.3 Skill Sets Covered by the Team

Software Development Skills:

Frontend: Logan, Zach, Gavin, Kaden

Backend: Elyse, Kolby, Kaden, Gavin

API: Elyse, Kaden

SQL: Elyse, Kaden, Logan

AWS: Elyse, Kaden, Kolby

AI-Model Creation Skills: Elyse

Entrepreneurship Skills: Zach

Leadership Skills: Kolby

9.4 Project Management Style Adopted by the Team

Our team uses an Agile approach to project management. All tasks are placed onto a Git Task
Board. We have weekly meetings highlighting what we accomplished and what we plan to do in
the upcoming weeks. We chose a meeting lead, Kolby Kucera, who leads the team and keeps
us on track in these weekly meetings. During the meetings, the team also moves tasks on the
task board to determine what it completed, in progress, or saved for future week’s work. As a
team, the decisive goal of these meetings is to ensure that we are constantly iterating and
making minor changes to our project.

We also assigned other team leadership roles based on the individual’s strengths and interests.
These other roles include a communication lead, a research lead, a project manager, a
technical lead, and a testing lead.

9.5 Initial Project Management Roles
Team Liaison/Communication Leads: Zachary Foote



Research Lead: Logan Roe
Project Manager: Kaden Wingert
Technical Lead/Architect: Elyse Kriegel
Testing/Quality Assurance: Gavin Rich
Documentation/Meeting Lead: Kolby Kucera

9.6 Team Contract

Team Members:
1) Kaden Wingert 2) Kolby Kucera
3) Zachary Foote 4) Logan Roe
5) Elyse Kriegel 6) Gavin Rich

Team Procedures

1. Day, time, and location (face-to-face or virtual) for regular team meetings:

Weekly Meetings every Thursday from 1:50 - 2:50 pm in person at the Student

Innovation Center.

2. Preferred method of communication updates, reminders, issues, and scheduling (e.g.,

e-mail, phone, app, face-to-face):

Discord will be our primary method of communication. Snapchat/Phone is used for

emergencies. We will store documents in our shared Google Drive folder.

3. Decision-making policy (e.g., consensus, majority vote):

When making decisions, we will vote to determine our course of action. A minimum of 4

out of 6 people will have to agree.

4. Procedures for record keeping (i.e., who will keep meeting minutes, how will minutes be

shared/archived):

Kolby will take notes during meetings and upload the notes to our shared Google Drive

after each meeting.

Participation Expectations

1. Expected individual attendance, punctuality, and participation at all team meetings:

Unless otherwise communicated, all group members must attend all team meetings on

time. If someone is going to be absent or late, they must communicate in advance and

let the team know how they will make up their missed time.

2. Expected level of responsibility for fulfilling team assignments, timelines, and deadlines:



All group members should contribute their fair share in all assignments, timelines, and

deadlines. We will fairly and evenly assign tasks to each team member for each

assignment.

3. Expected level of communication with other team members:

Group members should respond to messages within a day (barring unforeseen

circumstances). The group members are expected to complete their assignments on

time and frequently communicate any comments, questions, or information that the rest

of the group should know.

4. Expected level of commitment to team decisions and tasks:

We expect all members to be committed and enthusiastic about our project. This

involves actively participating in the weekly group meetings and completing any of their

assigned tasks. If a member is not contributing, we will address it at our weekly meeting.

Leadership

1. Leadership roles for each team member (e.g., team organization, client interaction,

individual component design, testing, etc.):

Team Liaison/Communication Leads: Zachary Foote

Research Lead: Logan Roe

Project Manager: Kaden Wingert

Technical Lead/Architect: Elyse Kriegel

Testing/Quality Assurance: Gavin Rich

Documentation/Meeting Lead: Kolby Kucera

Full-stack Developer: All members will be developing both frontend and backend

2. Strategies for supporting and guiding the work of all team members:

We will frequently do progress check-ins with the group members through Discord to see

how everyone is doing on their tasks. This will facilitate conversations if they are

struggling and need help from the group. We will also hold brief stand-up meetings at the

start of our weekly meetings. These stand-up meetings will address any challenges

being faced, and the group will work to address this.

3. Strategies for recognizing the contributions of all team members:

We will regularly highlight individual achievements and contributions during team

meetings. This would involve shouting out successful project completions, creative



problem-solving, or efforts that align with the team’s goals. We will implement regular

project checkpoint retrospectives where team members can reflect on each other’s

contributions. This not only encourages recognition but also improves collaboration and

team dynamics.

Collaboration and Inclusion

1. Describe the skills, expertise, and unique perspectives each team member brings to the

team.

Kaden: Experience developing in C, C++, Python, Java, web development (React,

JavaScript, HTML, CSS, Typescript), mobile app development, AWS, SQL, MongoDB.

Kolby: Experience with full stack development on ERP systems and web applications.

Skills: C, Python, Java, Relational Databases, SQL, HTML, CSS, Javascript, Typescript,

AWS

Zachary: Experience with Front end programming (HTML, CSS, Javascript, Java,

Android Studio). Experience with retrofit to allow frontend-backend communication.

Elyse: Typescript, Python, Java, HTML, CSS, React, AWS, SQL, Kotlin, C, C++, C#

Logan: Experience developing in Java, JavaScript, HTML, CSS, MATLAB, C++, Python,

React, Typescript, android app development, and SQL.

Gavin: Experience with full-stack development within the ASP.NET environment and C#.

Other development experience in React, Python, Java, HTML/CSS/JavaScript, SQL, and

C.

2. Strategies for encouraging and supporting contributions and ideas from all team

members:

We will use inclusive language and encourage open discussions to foster an

environment where every voice is valued. Additionally, we will encourage brainstorming

sessions where any idea is considered valid for discussion. Our stand-up meetings and

retrospectives will be a way to give each team member an equal opportunity to share

updates and concerns in a structured way.

3. Procedures for identifying and resolving collaboration or inclusion issues (e.g., how will a

team member inform the team that the team environment obstructs their opportunity or

ability to contribute?)

We will address an issue if a team member brings it up during our weekly meeting. If

necessary, we will schedule an emergency meeting to discuss their concerns or discuss



them at our weekly meetings. Periodically, we will assess how the group feels about

collaboration and inclusion. This can be done through structured reflections during team

meetings.

Goal-Setting, Planning, and Execution
1. Team goals for this semester:

● A working prototype of a functional Chrome extension is ready for demo.

● Complete design of all of the pages on the website and app on an application

such as Figma.

● A clear vision of roles for the developmental phase of the project.

● Incremental progress from each teammate (weekly updates on work).

● Backend capable of pulling prices from 3 or more websites.

2. Strategies for planning and assigning individual and teamwork:

We will create stories on our GitLab Kanban board every week at our stand-up meeting

and whenever they are needed. These stories will be assigned to members to evenly

distribute work as well as a way to keep track of what still needs to be done. We also will

keep a product backlog where we can have extra features that are lower priority. This

allows the developers to pick up tasks if they finish their tasks earlier than anticipated.

3. Strategies for keeping on task:

We will break the project into milestones with clear deadlines. Tools such as Gantt charts

can be helpful to visualize the timeline of the project. Our weekly standup meetings (15

minutes max) will allow each team member to share their progress, what they’ll be

working on next, and any issues they are having.

After our standup meeting, we will develop a plan of what we want to accomplish with

the remaining meeting time. This will give us a short-term goal to keep us focused on the

task.

Consequences for Not Adhering to Team Contract

1. How will you handle infractions of any of the obligations of this team contract?



When a team member violates a part of the team contract by disrespecting a team

member, failing to complete their tasks on time, not showing up to meetings, etc, we will

immediately identify the issue. We will allow them to explain their situation and any

challenges they may face. Then, we will remind them of this team contract and their

agreed-upon responsibilities. Next, we will set goals for improvement to ensure the team

members know the consequences of repeated infractions.

2. What will your team do if the infractions continue?

If infractions occur, we will record the specific incidents, including dates, the nature of the

issues, and any attempts to resolve them. If the situation doesn’t improve after following

the previously outlined steps, we will schedule a meeting with the professor as an

intermediary to discuss issues. We will present the documentation of the infractions and

describe the steps we took to address them.

The professor can offer a different perspective and guide in handling the situation.

***************************************************************************
a) I participated in formulating the standards, roles, and procedures as stated in this contract.
b) I understand that I am obligated to abide by these terms and conditions.
c) I understand that if I do not abide by these terms and conditions, I will suffer the
consequences as stated in this contract.
1) Kaden Wingert DATE 9/17/2024
2) Kolby Kucera DATE 9/17/2024
3) Logan Roe DATE 9/17/2024
4) Gavin Rich DATE 9/19/2024
5) Zachary Foote DATE 9/19/2024
6) Elyse Kriegel DATE 9/19/2024


